workshop in particle physics

development of electromagnetic showers

Paolo Desiati desiati@wipac.wisc.edu

Wisconsin IceCube Particle Astrophysics Center (WIPAC) & Department of Astronomy

University of Wisconsin - Madison

1

1. fundamental interactions & EM showers

2. development of electromagnetic showers

3. hadronic showers

outline workshop in particle physics

electron ionization losses

electromagnetic showers

cascade equations

importance of energy losses

universality of electromagnetic showers

ELECTROMAGNETIC SHOWERS

electromagnetic showers

- particles involved
 - ▶ e[±] and γ

- interactions involved
 - bremsstrahlung
 - ► pair production
 - ionization losses

e-pair production & bremsstrahlung electromagnetic showers

PAIR PRODUCTION

high energy limit full screening

e-pair production & bremsstrahlung splitting function

radiation length: distance where the energy of an electron is reduced to E/e

BREMSSTRAHLUNG

$$\varphi(v) = \left. \frac{d\sigma}{dv}(v) \right|_{brems} \left(\frac{N_a}{A} \lambda_{rad} \right)$$

$$\varphi(v) = \frac{1}{v} \left[1 - \left(\frac{2}{3} - 2b\right) (1 - v) + (1 - v)^2 \right]$$

$$\int_0^1 dv \, v \, \varphi(v) = 1 + b$$

probability per unit of λ_{rad} that an e[±] of energy E_e emits a photon of energy E_{\u03c0} = vE_e

e-pair production & bremsstrahlung photon mean free path

photon mean free path: 9/7 of the radiation length

$$\psi(u) = \left. \frac{d\sigma}{du}(u) \right|_{epair} \left(\frac{N_A}{A} \lambda_{rad} \right)$$

probability per unit of λ_{rad} that a γ of energy E_{γ} produces a pair with e⁺/e⁻ of energy $E_e = uE_{\gamma}$

$$\psi(u) = (1-u)^2 + \left(\frac{2}{3} - 2b\right)(1-u)u + u^2$$
$$\sigma_0 = \int_0^1 du\,\psi(u) = \frac{7}{9} - \frac{b}{3}$$

electromagnetic showers splitting functions

$$= \frac{1}{v} \left[1 - \left(\frac{2}{3} - 2b\right) (1 - v) + (1 - v)^2 \right]$$

$$\frac{1}{\lambda_{rad}} = \frac{N_A}{A} 4Z^2 \alpha r_e^2 \ln 183Z^{-1/3}$$

probability per unit of λ_{rad} that an e[±] of energy E_e emits a photon of energy E_γ = vE_e

 $\lambda_{pair}^{\rm air} \simeq 47 \, {\rm g/cm}^2$

 $\lambda_{rad}^{air} \simeq 37 \,\mathrm{g/cm^2}$

probability per unit of λ_{rad} that a γ of energy E_{γ} produces a pair with e⁺/e⁻ of energy $E_e = uE_{\gamma}$

e

electromagnetic showers

BREMSSTRAHLUNG

(v)

PAIR PRODUCTION

electron lose energy by collision as well...

- electrons **collide** with atomic electrons and nuclei of the medium
- these collisions produce energy loss and angular deviations
- in first approximation the collisions can be described with **Rutherford scattering**

$$\frac{d\sigma}{d\Omega} = \left(\frac{Z_1 Z_2 e^2}{16\pi \epsilon_0 E}\right)^2 \frac{1}{\sin^4 \frac{\theta}{2}}$$
$$\frac{d\sigma}{d\Omega} = \left(\frac{Z\alpha}{2E}\right)^2 \frac{1}{\sin^4 \frac{\theta}{2}}$$

- if energetic charged particle
 - hit nuclei: they change a bit direction (multiple scattering) & lose a bit of energy (bremsstrahlung)
 - large hit: inelastic collision (nuclei break up)
 - hit electrons: excite atoms or kick electron out (ionization)
 - if electron get large kick: delta rays

 $q = (\nu, \mathbf{q})^{\mathsf{T}}$

 $k = (E_1, \mathbf{p_1})$

 $k' = (E_3, \mathbf{p}_3)$

p = (M, 0)

 $p' = (E_4, \mathbf{p}_4)$

• with 4-momentum transferred
$$Q^2 = -(k - k')^2 = -(p - p')^2$$

$$-Q^{2} = 2m_{e} - 2(E_{1}E^{2} - p_{1}p_{2}\cos\theta) = 2M^{2} - 2ME'$$

$$-Q^2 \simeq 2p^2(1 - \cos\theta) \simeq 2ME'$$

E' is the kinetic energy transferred to the target particle initially at rest

a generalization of Rutherford scattering cross section

$$\left. \frac{d\sigma}{dE} \right|_{\text{collision}} = 2\pi \frac{e^4}{m_e c^2 \beta^2 E^2} \left(1 - \beta^2 \frac{E}{E_{max}} \right)$$

• rate of energy loss per unit of column density

$$\frac{dE}{dX}\Big|_{\text{collision}} = \frac{ZN_A}{A} \int dE \, E \, \frac{d\sigma}{dE}$$
$$\Big|_{\text{collision}} = \frac{ZN_A}{A} \, 2\pi \frac{e^4}{m_e c^2} \frac{1}{\beta^2} \int_{E_{min}}^{E_{max}} dE \, E \, \frac{1}{E^2} \left[1 - \beta^2 \frac{E}{E_{max}}\right]$$
$$\frac{dE}{dX}\Big|_{\text{collision}} = \frac{ZN_A}{A} \, 2\pi \frac{e^4}{m_e c^2} \frac{1}{\beta^2} \left[\ln\left(\frac{E_{max}}{E_{min}}\right) - \beta^2\right]$$

dE

 \overline{dX}

• rate of energy loss per unit of column density

$$\frac{dE}{dX}\Big|_{\text{collision}} = \frac{ZN_A}{A} 2\pi \frac{e^4}{m_e c^2} \frac{1}{\beta^2} \left[\ln\left(\frac{E_{max}}{E_{min}}\right) - \beta^2 \right]$$

minimum energy transfer to an atomic electron (ionization)

 $E_{max} \simeq m_e c^2 \beta \gamma$

 $E_{min} \simeq \langle I \rangle$

kinematic upper limit for e-e scattering

ionization losses Bethe-Bloch formula

• rate of energy loss per unit of column density

$$\frac{dE}{dX}\Big|_{\text{collision}} = \frac{ZN_A}{A} 2\pi \frac{e^4}{m_e c^2} \frac{1}{\beta^2} \left[\ln\left(\frac{E_{max}}{E_{min}}\right) - \beta^2 \right]$$

$$\left| \frac{dE}{dX} \right|_{\text{collision}} = \frac{ZN_A}{A} 2\pi \frac{e^4}{m_e c^2} \frac{1}{\beta^2} \left[\ln \left(\frac{2m_e c^2 \beta \gamma}{\langle I \rangle} \right) - \beta^2 \right] \right]$$

$$\frac{dE}{dX}\Big|_{\text{collision}}^{\beta\gamma\ll 1} \propto \frac{1}{\beta^2} \qquad \qquad \frac{dE}{dX}\Big|_{\text{collision}}^{\beta\gamma\gg 1} \propto \ln(\beta\gamma) \approx \epsilon = \text{constant}$$

electron energy losses

ionization losses Bethe-Bloch formula

PDG Book

$$\left\langle -\frac{dE}{dx}\right\rangle = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2}\ln\frac{2m_e c^2 \beta^2 \gamma^2 W_{\text{max}}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2}\right]$$

$$W_{
m max} = rac{2m_ec^2\,eta^2\gamma^2}{1+2\gamma m_e/M+(m_e/M)^2}$$

maximum energy transfer in a collision

photon energy losses

energy losses for e[±] critical energy in air

critical energy is when

$$\left. \frac{dE}{dX} \right|_{\text{collision}} = \left. \frac{dE}{dX} \right|_{\text{brems}}$$

$$\varepsilon_{\rm air} = \epsilon_{\rm coll} \times \lambda_{rad} \simeq 2.2 \frac{{
m MeV}}{{
m g\,cm^{-2}}} \times 37 {
m g\,cm^{-2}} \simeq 81 \, {
m MeV}$$

energy-independent loss per unit of radiation length

electromagnetic showers

energy losses for γ Compton scattering

OCTOBER, 1941

REVIEWS OF MODERN PHYSICS

Cosmic-Ray Theory

BRUNO ROSSI AND KENNETH GREISEN Cornell University, Ithaca, New York

TABLE OF CONTENTS

Introduction	Page 241
Part I. Fundamental Processes	
A. Collision Processes	243
§ 1. Application of the Conservation Laws	243
§ 2. Differential Collision Probability	243
§ 3. Collision Loss	245

VOLUME 13

$$\frac{\partial n_e(E,t)}{\partial t} = -(e \to \gamma)_{\text{brems}} + (e \to e)_{\text{brems}} + (\gamma \to e)_{\text{epair}}$$

$$\frac{\partial n_e(E,t)}{\partial t} = -n_e(E,t) \int_0^1 dv \varphi(v) \qquad \qquad -\frac{n_e(E,t)}{\lambda_{rad}} \\
+ \int_E^\infty dE' \int_0^1 dv \, n_e(E',t) \, \varphi(v) \, \delta[E - (1-v)E'] \\
+ \int_E^\infty dE' \int_0^1 du \, n_\gamma(E',t) \, \psi(u) \, \delta[E - uE']$$

$$\frac{\partial n_e(E,t)}{\partial t} = -(e \to \gamma)_{\text{brems}} + (e \to e)_{\text{brems}} + (\gamma \to e)_{\text{epair}}$$

$$\begin{aligned} \frac{\partial n_e(E,t)}{\partial t} &= -\int_0^1 dv \varphi(v) \left[n_e(E,t) - \frac{1}{1-v} n_e\left(\frac{E}{1-v},t\right) \right] & \text{brems} \\ &+ 2\int_0^1 \frac{du}{u} \,\psi(u) \, n_\gamma\left(\frac{E}{u},t\right) & \text{epair} \end{aligned}$$

$$\frac{\partial n_{\gamma}(E,t)}{\partial t} = -(\gamma \to e)_{\text{epair}} + (e \to \gamma)_{\text{brems}}$$

$$\frac{\partial n_{\gamma}(E,t)}{\partial t} = -(\gamma \to e)_{\text{epair}} + (e \to \gamma)_{\text{brems}}$$

$$\frac{\partial n_{\gamma}(E,t)}{\partial t} = -\sigma_0 n_{\gamma}(E,t) + \int_0^1 \frac{dv}{v} \varphi(v) n_e\left(\frac{E}{v},t\right)$$

epair

brems

33

APPROXIMATION A

APPROXIMATION A

$$\begin{cases} \frac{\partial n_e(E,t)}{\partial t} = -\int_0^1 dv \varphi(v) \left[n_e(E,t) - \frac{1}{1-v} n_e\left(\frac{E}{1-v},t\right) \right. \\ \left. + 2\int_0^1 \frac{du}{u} \,\psi(u) \, n_\gamma\left(\frac{E}{u},t\right) \right. \\ \frac{\partial n_\gamma(E,t)}{\partial t} = -\sigma_0 \, n_\gamma(E,t) \\ \left. + \int_0^1 \frac{dv}{v} \,\varphi(v) \, n_e\left(\frac{E}{v},t\right) \right. \end{cases}$$

re-write the equations using Mellin transform of spectra functions

$$\tilde{n}(s) = \int_0^\infty E^s \, n(E) \, dE$$

$$\frac{\partial \tilde{n}_e(s,t)}{\partial t} = A(s)\,\tilde{n}_e(s,t) + B(s)\,\tilde{n}_\gamma(s,t)$$

$$\frac{\partial \tilde{n}_{\gamma}(s,t)}{\partial t} = C(s)\,\tilde{n}_{e}(s,t) - \sigma_{0}\,\tilde{n}_{\gamma}(s,t)$$

electromagnetic showers spectrum weighted moments of splitting functions

$$A(s) = \int_0^1 dv \,\varphi(v) [1 - (1 - v)^s]$$

= $\left(\frac{4}{3} + 2b\right) \left(\frac{\Gamma'(1 + s)}{\Gamma(1 + s)} + \gamma\right) + \frac{6[7 + 5s + 12b(2 + s)]}{s(1 + s)(2 + s)}$

$$B(s) = 2 \int_0^1 du \, u^s \, \psi(u)$$

= $\frac{2[14 + 11s + 3s^2 - 6b(1+s)]}{3(1+s)(2+s)(3+s)}$

$$C(s) = \int_0^1 dv \, v^s \, \varphi(v)$$

= $\frac{8 + 7s + 3s^2 + 6b(2+s)}{3s(2+3s+s^2)}$

$$\sigma_0 = \int_0^1 du \, \psi(u) = \frac{7}{9} - \frac{b}{3}$$

 $\gamma = 0.5772$ Euler's constant

35

APPROXIMATION A

$$\frac{\partial \tilde{n}_e(s,t)}{\partial t} = A(s) \,\tilde{n}_e(s,t) + B(s) \,\tilde{n}_\gamma(s,t)$$
$$\frac{\partial \tilde{n}_\gamma(s,t)}{\partial t} = C(s) \,\tilde{n}_e(s,t) - \sigma_0 \,\tilde{n}_\gamma(s,t)$$

we now have a linear system of differential equations

initial conditions:

$$n_{\gamma}(E,0) = \delta(E - E_0) \qquad n_e(E,0) = 0$$
$$\tilde{n}_{\gamma}(s,0) = E_0^s \qquad \tilde{n}_e(s,0) = 0$$

boton-initiated cascade OR electron-initiated cascad

photon-initiated cascade OR electron-initiated cascade

APPROXIMATION A

$$\frac{\partial \tilde{n}_e(s,t)}{\partial t} = A(s) \,\tilde{n}_e(s,t) + B(s) \,\tilde{n}_\gamma(s,t)$$
$$\frac{\partial \tilde{n}_\gamma(s,t)}{\partial t} = C(s) \,\tilde{n}_e(s,t) - \sigma_0 \,\tilde{n}_\gamma(s,t)$$

we now have a linear system of differential equations

1

$$\tilde{n}_e(s,t) = \frac{E_0^s}{\lambda_1(s) - \lambda_2(s)} \left[\left(\sigma_0 + \lambda_1(s) \right) e^{\lambda_1(s) t} - \left(\sigma_0 + \lambda_2(s) \right) e^{\lambda_2(s) t} \right]$$

$$\tilde{n}_{\gamma}(s,t) = \frac{C(s) E_0^s}{\lambda_1(s) - \lambda_2(s)} \left[e^{\lambda_1(s) t} - e^{\lambda_2(s) t} \right]$$

$$\tilde{n}_{\gamma}(s,t) = \frac{C(s) E_0}{\lambda_1(s) - \lambda_2(s)} \left[e^{\lambda_1(s) t} - e^{\lambda_2(s) t} \right]$$

$$\lambda_{1,2}(s) = -\frac{1}{2}(A(s) + \sigma_0) \pm \frac{1}{2}\sqrt{(A(s) - \sigma_0)^2 + 4B(s)C(s)}$$
 eigenvalues

$$r_{\gamma}^{(1,2)}(s) = \frac{C(s)}{\sigma_0 + \lambda_{1,2}(s)} = \frac{\text{photons}}{\text{electrons}}$$

eigenvectors

APPROXIMATION A

APPROXIMATION A

15

electromagnetic showers cascade equations - Mellin Transform

APPROXIMATION A

inverse Mellin transforms

$$n(E) = \frac{1}{2\pi i} \int_{C} ds \, E^{-(s+1)} \, \tilde{n}(s)$$
$$\frac{1}{2\pi i} \int_{s_0 - i\infty}^{s_0 + i\infty} ds \, E^{-(s+1)} \, \tilde{n}(s)$$

this integral **cannot** be solved analytically but can be solved numerically or use the **saddle point approximation**

$$n_{\gamma}(E,t) = \frac{1}{2\pi i} \int_{C} E^{-(s+1)} \frac{C(s) E_{0}^{s}}{\lambda_{1}(s) - \lambda_{2}(s)} e^{\lambda_{1}(s) t} ds \quad t \gg |\lambda_{2}(s)|^{-1}$$

APPROXIMATION A

$$n_{\gamma}(E,t) = \frac{1}{2\pi i} \int_{C} E^{-(s+1)} \frac{C(s) E_{0}^{s}}{\lambda_{1}(s) - \lambda_{2}(s)} e^{\lambda_{1}(s) t} ds \quad t \gg |\lambda_{2}(s)|^{-1}$$

saddle point approximation: separate terms with strong s-dependence

$$n_{\gamma}(E,t) = \frac{1}{2\pi i} \int_C \frac{1}{E} \left(\frac{E_0}{E}\right)^s \frac{C(s)}{\lambda_1(s) - \lambda_2(s)} e^{\lambda_1(s) t} ds$$

$$n_{\gamma}(E,t) = \frac{1}{2\pi i} \frac{1}{E} \int_C \frac{C(s)}{\lambda_1(s) - \lambda_2(s)} e^{\lambda_1(s) t + s \ln(E_0/E)} ds$$

electromagnetic showers cascade equations - saddle point approximation

APPROXIMATION A

saddle point approximation: separate terms with strong s-dependence

$$n_{\gamma}(E,t) = \frac{1}{2\pi i} \frac{1}{E} \int_{C} \frac{C(s)}{\lambda_{1}(s) - \lambda_{2}(s)} e^{\lambda_{1}(s) t + s \ln(E_{0}/E)} ds$$
$$n_{\gamma}(E,t) = \frac{1}{2\pi i} \frac{1}{E} \int_{C} \frac{C(s)}{\sqrt{s} \left[\lambda_{1}(s) - \lambda_{2}(s)\right]} e^{\lambda_{1}(s) t + s \ln(E_{0}/E) + 1/2 \ln s} ds$$

slowly varying / value @saddle point

rapidly varying find extremum (saddle point)

$$\forall f(z) = f(x + iy) \rightarrow \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$$
 integrand function has a **saddle point**

electromagnetic showers cascade equations - approximate solution

APPROXIMATION A

$$n_{\gamma}(E,t) = \frac{1}{2\pi i} \frac{1}{E} \int_{C} \frac{C(s)}{\sqrt{s} \left[\lambda_{1}(s) - \lambda_{2}(s)\right]} e^{\lambda_{1}(s) t + s \ln(E_{0}/E) + 1/2 \ln s} ds$$

$$\frac{d}{ds} [\lambda_1(s) t + s \ln(E_0/E) + 1/2 \ln s] = 0 \qquad \qquad \lambda_1'(\bar{s}) t + \ln(E_0/E) + \frac{1}{2\bar{s}} = 0$$

15

$$n_{\gamma}(E,t) \approx g(\bar{s}) \, \frac{1}{E} \, e^{\lambda_1(\bar{s}) \, t + \bar{s} \ln(E_0/E) + 1/2 \ln \bar{s}}$$

$$n_{\gamma}(E,t) \approx g(\bar{s}) \frac{1}{E_0} \left(\frac{E}{E_0}\right)^{-(s+1)} e^{\lambda_1(\bar{s}) t}$$

electromagnetic showers cascade equations - approximate solution

APPROXIMATION A

$$n_e(E,t) \approx g(\bar{s}) \frac{1}{E_0} \left(\frac{E}{E_0}\right)^{-(s+1)} e^{\lambda_1(\bar{s}) t}$$

$$n_\gamma(E,t) \approx g(\bar{s}) \frac{r_\gamma^{(1)}(\bar{s})}{E_0} \left(\frac{E}{E_0}\right)^{-(s+1)} e^{\lambda_1(\bar{s}) t} \quad r_\gamma^{(1)}(\bar{s}) = \frac{C(\bar{s})}{\sigma_0 + \lambda_1(\bar{s})}$$

shower age defined by the solution to

 $\lambda_1'(\bar{s}) t + \ln(E_0/E) + \frac{1}{2\bar{s}} = 0 \qquad \qquad \lambda_1(s) \approx \bar{\lambda}_1(s) = \frac{1}{2}(s - 1 - 3\ln s)$ $\boxed{\bar{s} \approx \frac{3t}{t + 2\ln\frac{E_0}{E}}}$

electromagnetic showers cascade equations - approximate solution

0.06

0.05

APPROXIMATION A

$$n_e(E,t) \approx g(\bar{s}) \frac{1}{E_0} \left(\frac{E}{E_0}\right)^{-(s+1)} e^{\lambda_1(\bar{s})t}$$
$$n_\gamma(E,t) \approx g(\bar{s}) \frac{r_\gamma^{(1)}(\bar{s})}{E_0} \left(\frac{E}{E_0}\right)^{-(s+1)} e^{\lambda_1(\bar{s})t}$$

$$\overline{s}\approx \frac{3t}{t+2\ln\frac{E_0}{E}}$$
 shower age

$$t_{max}^{[s=1]}\left(\frac{E}{E_0}\right) \simeq \ln\left(\frac{E_0}{E}\right)$$

$$E_{0} = 10^{18} \text{ eV (Approximation A)}$$

---- s=0.7 (t=14.6)
---- s=1.0 (t=23.7)
----- s=1.4 (t=41.3)
- e^{\lambda_{1}(s) t} V

 $\lambda_1(s) \approx \bar{\lambda}_1(s) = \frac{1}{2}(s - 1 - 3\ln s)$

15

electromagnetic showers cascade equations - shower development

APPROXIMATION A

spectra solution at equilibrium (t $\gg |\lambda_2(s)|^{-1}$)

$$n_e(E,t) = K E^{-(s+1)} e^{\lambda_1(s) t}$$

$$n_{\gamma}(E,t) = K r_{\gamma}^{(1)}(s) E^{-(s+1)} e^{\lambda_1(s) t}$$

• the spectra remain power law for all values of t

 the only t-independent solution is for s=1 (λ₂=0) spectra **do not** depend on cross sections shower maximum

 $n_e(E,t) = K E^{-2}$ $n_\gamma(E,t) = K r_\gamma^{(1)}(s) E^{-2}$ $\bar{r}_\gamma = r_\gamma^{(1)} \approx 1.31$

electromagnetic showers cascade equations - shower development

- s evolves with the shower as a function of t
- energy spectra evolve from harder to softer

$$n_e(E,t) = K E^{-(s+1)} e^{\lambda_1(s) t}$$
$$n_{\gamma}(E,t) = K r_{\gamma}^{(1)}(s) E^{-(s+1)} e^{\lambda_1(s) t}$$

electromagnetic showers generated by a γ or an e

- s as *local slope* of energy spectra in t
- local slope changes with E/E₀ & t
- s grows monotonically with E/E₀ (steeper spectrum)

- photon & electron spectra different shapes via $r_{\gamma}^{(1)}(\bar{s})$
- photons & electrons quickly reach equilibrium independently of what particle initiated the shower

no **energy scaling** reference @given **t** spectra depend also on **E/E**₀

$$\bar{s} \approx \frac{3t}{t + 2\ln\frac{E_0}{E}}$$

 $t_{max}^{[s=1]}\left(\frac{E}{E_0}\right) \simeq \ln\left(\frac{E_0}{E}\right)$

APPROXIMATION A

APPROXIMATION B

describe an EM shower

based on bremsstrahlung and pair production

with asymptotic (high energy) scale-invariant

splitting functions

and accounting for collisional energy losses

neglect Compton scattering

electromagnetic showers cascade equations - elementary solutions

APPROXIMATION B

spectra solution at equilibrium (t $\gg |\lambda_2(s)|^{-1}$)

$$n_e(E,t) = K E^{-(s+1)} e^{\lambda_1(s) t} \times p_1\left(s, \frac{E}{\epsilon}\right)$$
$$n_\gamma(E,t) = K r_\gamma^{(1)}(s) E^{-(s+1)} e^{\lambda_1(s) t} \times g_1\left(s, \frac{E}{\epsilon}\right)$$

$$p_1\left(s,\frac{E}{\epsilon}\right) \approx \begin{bmatrix} \left(\frac{E}{\epsilon}\right)^{s+1} & \frac{E}{\epsilon} \ll 1\\ 1 & \frac{E}{\epsilon} \gg 1 \end{bmatrix} \qquad g_1\left(s,\frac{E}{\epsilon}\right) \approx \begin{bmatrix} \left(\frac{E}{\epsilon}\right)^s & \frac{E}{\epsilon} \ll 1\\ 1 & \frac{E}{\epsilon} \gg 1 \end{bmatrix}$$

APPROXIMATION B

electromagnetic showers generated by a γ or an e

• solving
$$\begin{array}{ll} n_e(E,t) &= 0 \\ n_\gamma(E,t) &= \delta(E-E_0) \end{array}$$
 or $\begin{array}{ll} n_e \\ n_\gamma \end{array}$

• approximate solution in figure $t \gg 1$

$$\begin{cases} \bar{s}\left(\frac{\epsilon}{E_0}, t\right) \simeq \frac{3t}{t + 2\ln(E_0/\epsilon)} \\ \text{specific s-t mapping} \end{cases}$$

$$t_{max}^{[s=1]} \simeq \ln\left(\frac{E_0}{\epsilon}\right)$$

electromagnetic showers generated by a γ or an e

- s as global slope of energy spectra in t
- photon & electron spectra similar at all t

 photons & electrons quickly reach equilibrium independently of what particle initiated the shower

> energy scaling provided by collisional loss critical energy @given t spectra are essentially well defined

UNIVERSALITY

54

APPROXIMATION B

$$\bar{s}\left(\frac{\epsilon}{E_0}, t\right) \simeq \frac{3t}{t + 2\ln(E_0/\epsilon)}$$

specific s-t mapping

$$t_{max}^{[s=1]} \simeq \ln\left(\frac{E_0}{\epsilon}\right)$$

APPROXIMATION B

10

15

electromagnetic showers age of a shower

- age of a shower related to *similarity* of all showers to each other @maximum
- @maximum "most" photons & electrons have same shape and relative norm.

- maximum of shower is where derivative of N(t) vanishes $s = \lambda_1^{-1} \left(\frac{1}{N(t)} \frac{dN(t)}{dt} \right)$
- λ_1^{-1} is the inverse of $\lambda_1(s)$
- in approximation B the age corresponds to

 $s = \frac{3t}{t + 2\ln(E_0/\epsilon)}$

• with approximate depth @shower maximum

APPROXIMATION B

electromagnetic showers age of a shower

- showers generated by different primaries but with same age, have essentially the same spectral shape
- in showers of same age "most" of the particles have same spectra
- however distributions at higher energies are different
- at high energy t-evolution of showers are not uniquely defined by age, but depends on primary energy (approximation A)

$$N_e(E_{min},t) = \int_{E_{min}}^{E_{max}} dE \, n_e(E,t) \qquad \qquad \text{shower size}$$

$$N_e(E_{min},t) \approx K \left(\frac{E_{min}}{E_0}\right)^{-s} e^{\lambda_1(s)t}$$
 $\epsilon < E < E_0$

$$\frac{dN(t)}{dt} \simeq \lambda(s) N(t) \qquad \qquad \frac{dN(t)}{dt} = \left[\lambda(s) + \left[\lambda_1'(s)t + \ln(E_0/E_{min})\right]\frac{ds}{dt}\right] N(t)$$

 $\lambda_1'(s)t + \ln(E_0/E_{min}) = 0$

$$\lambda_1'(s)t + \ln(E_0/E_{min}) = 0$$

constrain on the evolution of the shower

$$\frac{1}{2}\left(1-\frac{3}{s}\right)t+\ln\left(\frac{E_0}{E_{min}}\right)=0 \qquad \qquad \lambda_1(s)\approx \bar{\lambda}_1(s)=\frac{1}{2}(s-1-3\ln s)$$
 Greisen

$$s(t) = \frac{3t}{t + 2\ln(E_0/E_{min})}$$
$$t = t_{max}(s = 1) \rightarrow t_{max} = \ln\left(\frac{E_0}{E_{min}}\right)$$

exact

in current approximation

$$\frac{dN(t)}{dt} = \lambda(s) N(t) \qquad \qquad \lambda_1(s) \approx \bar{\lambda}_1(s) = \frac{1}{2}(s - 1 - 3\ln s)$$

$$s(t) = \frac{3t}{t + 2\ln(E_0/E_{min})}$$

$$\frac{dN(t)}{dt} = \frac{1}{2} \left[\frac{3t}{t + 2t_{max}} - 1 - 3\ln\left(\frac{3t}{t + 2t_{max}}\right) \right] N(t)$$

$$N(t) = N_{max} \exp\left[t \left(1 - \frac{3}{2} \ln\left(\frac{3t}{t + 2t_{max}}\right) \right) \right]$$

$$N_{\text{Greisen}}(E_0, t) = \frac{0.135}{\sqrt{\ln(E_0/E_{min})}} \exp\left[t\left(1 - \frac{3}{2}\ln s\right)\right] \text{ APPROXIMATION A}$$

$$N_{\text{Greisen}}(E_0, t) = \frac{0.31}{\sqrt{\ln(E_0/\epsilon)}} \exp\left[t\left(1 - \frac{3}{2}\ln s\right)\right]$$

APPROXIMATION B

• this approximate solution is valid for

$$\lambda_1(s) = \frac{1}{2}(s - 1 - 3\ln s)$$

• and for
$$t_{max} = \ln\left(\frac{E_0}{E_{\min}}\right)$$
 $\epsilon < E_{\min} < E_0$

$$s = \frac{3t}{t + 2t_{max}}$$

estimate the **shape** of the particle spectrum knowing the **age** of the shower

age

electromagnetic showers Gaisser-Hillas longitudinal profile

- empirical formula describing shower longitudinal profiles
- used to fit observations from fluorescence detection experiments

$$N_{\rm GH}(t) = N_{\rm max} \left(\frac{t - t_0}{t_{max} - t_0}\right)^{(t_{max} - t_0)/\Lambda} \exp\left[\frac{t_{max} - t_0}{\Lambda}\right]$$

electromagnetic showers Heitler model

- above MeV mostly pair production
 & bremsstrahlung
- radiation length

$$\frac{1}{\lambda_{rad}} = \frac{N_A}{A} 4Z(Z+1)\alpha r_e^2 \ln 183Z^{-1/3}$$

• maximum shower depth @ $E_c = 2m_ec^2$

$$X_{max} = X_0 \, \frac{\ln(E_0/E_c)}{\ln 2}$$

THANK YOU

workshop in particle physics

hadronic showers

references

printed material

٠

- · Cosmic Ray Theory Rossi & Greisen, Mod. Phys. 13, 240, 1941
- Cosmic Ray Showers Greisen, Annu. Rev. Nucl. Sci. 10, 63, 1960
- Concept of "age" and "universality" in cosmic ray showers Paolo Lipari, PRD 79, 063001, 2009
- Cosmic Rays and Particle Physics. Thomas K. Gaisser