EXERCISE SHEET I

Exercise 1:

Analyse the properties of different astrophysical systems with given electron density n_e , temperature T_e and size L of the considered systems:

System	Interst. gas	Mol. cloud	Sol. corona	AGN	Cluster of galaxies	Cosmic rays
$n_e [\mathrm{cm}^{-3}]$	0.1	1	10^{6}	10^{9}	10^{-2}	10^{-9}
$T_e[K]$	10^{4}	10^{2}	10^{6}	10^{7}	107	10^{12}
$L[\mathrm{cm}]$	10^{18}	10^{17}	10^{10}	10^{15}	10^{23}	10^{18}

- (a) Calculate the electron plasma frequency ω_{pe} and the Debye length λ_D of the different astrophysical systems.
- (b) For which systems is a description as a plasma appropriate?
- (c) Use the Table to calculate the electron-electron collision length $\lambda_{ee} = v/\nu_{ee}$. Using the cross-section $\sigma = \pi r^2$ in the case of two colliding particles with relative speed \bar{v} and effective mass \bar{m} , the collision frequency is given by $\nu_{ee} = 4\pi e^4 n v/(\bar{m}^2 \bar{v}^4)$. Here you can assume that $v \approx \bar{v} = v_{th}$ and $\bar{m} = m_e$.

Are elastic 2-body collisions between cosmic ray electrons important?

(d) In a plasma the electrostatic interaction of the particles has to dominate over the usual kinetic of the gas. Does this criterion lead to a third requirement for a plasma we haven't discussed yet?

Exercise 2:

Determine the change of elements in our Milky Way due to the effect of spallation. Consider an instantaneous injection of medium heavy elements n_M (C, N, O) which decay into light elements n_L (Li, Be, B) with a probability p_{LM} .

- a.) Determine the differential equations for n_L and n_M by using the leaky box model (neglect momentum changes).
- b.) Calculate the temporal development of n_L and n_M and show that

$$n_M(t) = n_{m,0} \exp\left(-\frac{t}{\tau_M}\right)$$

$$n_L(t) = \frac{p_{LM} n_M(t) \tau_L}{\tau_M - \tau_L} \left[1 - \exp\left(\frac{t}{\tau_M} - \frac{t}{\tau_L}\right)\right]$$
(1)