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I. Defining A Plasma

1. Plasma parameter
1.1. Plasma?
An overall neutral charged gas containing so many free charged particles that their collective Lorentz
forces influence the properties of the medium considerably.

1.2. Electron plasma frequency
The frequency of the electrons that oscillate around the average density due to the pulling Coulomb
force and the inertia effect of the particles is called electron plasma frequency. Assuming the
electrons (of density ne) being shifted by δ with reference to the resting ions, the electric field
yields E = 4π e neδ. Using the equation of motion with respect to this electric field, we obtain
(thermal motion is ignored!)

me
d2δ

dt2 = −e E = −4π e2 neδ. (1)

Consequently, the eigenfrequency of this oscillation determines the electron plasma frequency

ωpe ≡

√
4π e2ne

me
= 5.64 · 104

√
ne

1 cm−3 Hz . (2)

1.3. Debye length
The distance beyond which the Coulomb force of a single test ion is shielded by the surrounding
plasma electrons is determined by the Debye length

λDe ≡ vth/ωpe =

√
kBTe

4π nee2 = 6.9

√
Te/1 K

ne/1 cm−3 cm . (3)

Necessary requirements for a plasma

(i) In order to obtain an overall neutral charged gas the physical dimension L of the plasma must
be much larger than the Debye length, i.e.

L� λDe . (4)

(ii) In order to obtain a collective particle behavior the number of particles within the Debye sphere,
which is defined by λs =

4π
3 neλ

3
De, has to be much more than one. The inversed number determines

the so-called plasma parameter which subsequently yields the second criterion for the definition of
a plasma

g ≡ λ−1
s = 7.3 · 10−4

( ne

1 cm−3

) 1
2
(

Te

1 K

)− 3
2

� 1 . (5)

CHAPTER I. DEFINING A PLASMA � 3



Table I.1.: Estimate of cosmic plasma parameters (taken from Schlickeiser 2002)
System Interst. gas Mol. cloud Sol. corona AGN Cluster of galaxies Cosmic rays

ne (cm−3) 0.1 1 106 109 10−2 10−9

Te (K) 104 102 106 107 107 1012

L (cm) 1018 1017 1010 1015 1023 1018

ωpe (s−1) 2 · 104 5 · 104 5 · 107 2 · 109 5 · 103 2

λDe (cm) 2 · 103 69 6.9 0.7 2 · 105 2 · 1011

g 3 · 10−10 7 · 10−7 7 · 10−10 7 · 10−10 2 · 10−15 2 · 10−26
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II. Kinetic Description Of Plasmas

1. Phase space density
Using the probability Fj(x, v) of finding a particle j with the velocity v located at the point x, so
that 0 ≤ Fj(x, v) ≤ 1, the probability density function or phase space density f j(x, v) is obtained by

f j(x, v) =
∂3Fj

∂vx ∂vy ∂vz
. (1)

2. Vlasov equation
In the following, the phase space density f j is considered to change in time due to the influence of
the Lorentz force. Based on the conservation of f j in phase space (no particle loss or generation in
phase space) we become

d f j

dt
=

∂ f j

∂t
+ ẋ ·

∂ f j

∂x
+ v̇ ·

∂ f j

∂v
= 0 , (2)

where ẋ = v, ∂/∂x = ∇x and ∂/∂v = ∇v. Using the Lorentz force

mj v̇j = qj

(
E(x, t) +

vj × B(x, t)
c

)
(3)

as well as a source term Sj(x, v, t) representing additional sources and sinks of particles, Eq. (2)
yields the Vlasov equation (or collisionless Boltzmann equation)

d f j

dt
=

∂ f j

∂t
+ v · ∇x f j +

q
m

(
E(x, t) +

v× B(x, t)
c

)
· ∇v f j = Sj(x, v, t) . (4)

It becomes useful to introduce some physical quantities. Therefore, the space-averaged number
density na of particles of species a is used and we define

(i) the number density of plasma particles na(x, t) = na

∫ ∞

−∞
d3v fa(x, v, t) ,

(ii) the flux of plasma particles ja(x, t) = na

∫ ∞

−∞
d3v v fa(x, v, t) ,

(iii) the mean velocity of plasma particles Va(x, t) ≡
∫ ∞
−∞ d3v v fa(x, v, t)

na(x, t)
,

(iv) the pressure tensor Πa,ik(x, t) ≡ ma

∫ ∞

−∞
d3v fa(x, v, t)(vi −Vi)(vk −Vk) .

(5)
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Moments of the Vlasov equation
Taking the 0th velocity moment of the Vlasov Eq. (4) yields∫ ∞

−∞
d3v

∂ fa

∂t︸ ︷︷ ︸
= ∂

∂t na(x, t)

+
∫ ∞

−∞
d3v v · ∇x fa︸ ︷︷ ︸

=∇x ·ja(x, t)

+
qa

ma

∫ ∞

−∞
d3v

(
E(x, t) +

v× B(x, t)
c

)
· ∇v fa︸ ︷︷ ︸

=0

=
∫ ∞

−∞
d3v Sa(x, v, t)︸ ︷︷ ︸
≡Qa(x, t)

,

(6)
where the second term simplifies due to ∇xv = 0 and the third term vanishes since in the case
of the x component (and subsequently also the other components) fa vanishes at vx = ±∞ and E,
B, vy, vz do not depend on vx. Thus, the 0th moment of the Vlasov equation yields the continuity
equation

∂na(x, t)
∂t

+∇x · ja(x, t) = Qa(x, t) . (7)

The 1st velocity moment of the Vlasov equation leads (shown in Schlickeiser 2002) to the momentum
equation

mana(x, t)
(

∂Va

∂t
+ Va∇xVa

)
+

3

∑
i=1
∇xi Πa,ki = na(x, t) qa

(
E +

Va × B
c

)
+ QPa(x, t) , (8)

where QPa(x, t) ≡ ma
∫ ∞
−∞ d3v (v−Va) Sa(x, v, t) denotes the momentum source term.

Note that an infinite number of equations as derived from the Vlasov equation is needed in order
to obtain a complete description of the plasma, since the nth moment of the Vlasov equation will
always involve a term with n + 1 factors of v. In practice, this series of equations is truncated by
physical arguments, like the cold plasma approximation where Πa vanishes or the description of
the flux vector via diffusion and advection approximations, as shown in the following chapter.

CHAPTER II. KINETIC DESCRIPTION OF PLASMAS � 6



III. The Transport Equation

1. Convection-diffusion equation
The flux ja(x, t) is determined by
(i) diffusion, which is typically approximated by the Fick’s first law (where the diffusive flux is
proportional to the local concentration gradient)

jdi f f (x, t) = −κ∇xna(x, t) , (1)

with the diffusion coefficient κ as well as
(ii) advection, which describes the bulk flow due to a velocity field u, so that we obtain

jadv(x, t) = na(x, t) u(x, t) . (2)

Using Eq.(1) and (2) the continuity equation (7) leads to the convection-diffusion equation (convection
means either advection or diffusion or a combination of both of them)

∂na(x, t)
∂t

= Qa(x, t) +∇x (κ∇xna(x, t))−∇x (na(x, t) u(x, t)) . (3)

2. Inclusion of momentum losses
The convection-diffusion equation (3) describes the spatial propagation of particles with time but
there are no momentum loss processes considered so far. Thus, interactions (e.g. bremsstrahlung,
synchrotron radiation, inverse Compton interactions or pion production) with ambient target pho-
ton and matter fields have to be taken into account when these particle interaction processes oper-
ate on time scales of the same order of magnitude as the diffusion and advection time scales. The
loss processes have to be divided into two groups:
(i) Continuous loss processes (where the particle loses momentum but the total number of particles
is conserved) are taken into account by the additional term

− ∂

∂p
( ṗ na) , (4)

with the momentum p of the particles and the momentum loss rate ṗ.
(ii) Catastrophic loss processes (where the total number of particles changes) are included by the
additional term

−na

τ
, (5)

where τ denotes the appropriate loss time.
In total, the convection diffusion equation under consideration of momentum losses, which deter-
mines the temporal development of the number density of plasma particles na(x, p, t) yields

∂na

∂t
= Qa(x, t) +∇x (D∇xna)−∇x (na u(x, t))− ∂

∂p
( ṗ na)−

na

τ
. (6)
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3. Leaky box model
Here we assume that the particles (of number density n) propagate freely in a containment volume
with a (constant) time of escape τesc. Thus, diffusion and advection terms vanish, as the time scales
τdi f f , τadv of the effective diffusion and advection, respectively, are considered to be much bigger
than τesc and spatially averaged quantities can be considered. The Eq. (6) is simplified under these
assumptions to

∂n
∂t

= Q− n
τesc

(7)

when there is also no momentum changing process (ṗ = 0). Using a delta function source
Q(p, t) = n0(p) δ(t) the differential equation (7) yields the simple solution

n(p, t) = n0(p) exp(−t/τesc) . (8)

Using a steady state approximation, where ∂n/∂t ' 0 the particle number density yields

n(E) = τesc(E) Q(E) . (9)

Consequently, the initial energy spectrum can be changed by propagation effects. In the simple
case that the escape time is approximated by the Larmor radius RL according to τesc ' RL/c =
E/(q B c2) an initial power law spectrum Q(E) = Q0 E−α with α < 3 is flattened to n(E) ∝ E−α+1.
However the cosmic ray spectrum Fig. (III.1) shows that below the knee 1− α ' −2.67, so that
other effects (like diffusion) need to be included in order to describe the observed spectrum.

Figure III.1.: The weighted cosmic ray spectrum, where the kind of observation, the kinks in the
spectral slope, as well as the approximated particle flux per time and area are indi-
cated (Becker 2008).
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IV. Quasilinear Theory & Parallel Scattering

The Vlasov equation (as derived in section II.2) leads to the fundamental problem of plasma
physics: The plasma particles determine the electromagnetic fields (according to the four Maxwell
equations) and vice versa (according to the Lorentz force). In order to proceed with a solution of
this coupled problem two opposite points of view need to be taken (Schlickeiser 2002):

1. The test wave approach, in which the plasma particle distribution functions are assumed to be
given in a prescribed initial state, so that the resulting electromagnetic field and their property
can be discussed. This approach leads to different types of plasma waves characterized by
the dispersion relation, that depends on the initial plasma condition. We are not going to
focus on this topic, so please have a look at Schlickeiser 2002 for more details.

2. The test particle approach , in which the electromagnetic fields are assumed to be given, and
the response of the particles can be discussed. This approach is studied in the following.

1. Fokker-Planck equation
Subsequently, we start with the Vlasov equation and take the effects of the plasma waves on the
particles of sort a into account

∂ fa

∂t
+ v

∂ fa

∂x
+ ṗ

∂ fa

∂p
= Sa(x, p, t) . (1)

with ṗ = qa

(
ET(x, t) + v×BT(x, t)

c

)
and ẋ = v = p/(γ ma). Under consideration of plasma turbu-

lence (δE , δB) the total electromagnetic field yields

BT = B0 + δB(x, t) and ET = δE , (2)

where large-scale electric fields are negligible due to the high conductivity of cosmic plasmas and
the uniform magnetic field is determined by B0 = B0 ez with B0 � δB. Since the actual position
due to the gyration of the particle in the uniform magnetic field is not so much of an interest as
the coordinates of the guiding center

R = (X, Y, Z) = x +
v× ez

ε Ω
, (3)

with the particle’s gyrofrequency Ω = e B0/(γ ma c) and the charge sign ε = qa/ |qa|. Using
spherical coordinates (p, µ, φ) in momentum space

px = p cos φ
√

1− µ2 , py = p sin φ
√

1− µ2 , pz = p µ , (4)

so that the spatial coordinates (3) of the guiding center become

X = x +
v
√

1− µ2

εΩ
sin φ , Y = y− v

√
1− µ2

εΩ
cos φ , Z = z . (5)
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Applying the new coordinate set xσ = (p, µ, φ, X, Y, Z) to the Vlasov equation (1) it yields (with
the Einstein summation convention)

∂ fa

∂t
+ v µ

∂ fa

∂Z
− ε Ω

∂ fa

∂φ
+

1
p2

∂

∂xσ

(
p2gxσ fa

)
= Sa(x, p, t) , (6)

where the generalized force term gxσ = ( ṗ, µ̇, φ̇, Ẋ, Ẏ, Ż) includes the effects of the randomly
fluctuating electromagnetic fields. In the following, an ensemble of distribution functions is
considered in order to find an expectation value of fa, i.e. 〈 fa(x, p, t)〉 = Fa(x, p, t). Using
〈δB(x, t)〉 = 〈δE(x, t)〉 = 0 (so that 〈B(x, t)〉 = B0 and 〈E(x, t)〉 = 0) we obtain

∂Fa

∂t
+ v µ

∂Fa

∂Z
− ε Ω

∂Fa

∂φ
= Sa(x, p, t)− 1

p2
∂

∂xσ

(
〈p2gxσ δ fa〉

)
, (7)

where δ fa(x, p, t) = fa(x, p, t) − Fa(x, p, t) denotes the fluctuation of the distribution function,
which is determined by

∂δ fa

∂t
+ v µ

∂δ fa

∂Z
− ε Ω

∂δ fa

∂φ
= −gxσ

∂Fa

∂xσ
− gxσ

∂δ fa

∂xσ
+ 〈gxσ

∂δ fa

∂xσ
〉 . (8)

It can be shown (Schlickeiser 2002) that the variation δ fa generated by gxσ must remain much
smaller than Fa, so that the first term on the right hand side of Eq. (8) is dominating and the
remaining differential equation can be solved by the method of characteristics, which yields

δ fa(t) = δ fa(t0)−
∫ t

t0

ds
[

gxσ(xσ, s)
δFa(xσ, s)

∂xσ

]′
. (9)

The prime indicates that the bracketed term has to be evaluated along the characteristics, i.e. an
unperturbed particle orbit in the uniform magnetic field. The particle’s phase space density at the
initial time t0 is considered as completely uncorrelated to the turbulent field so that 〈δ fagxσ〉 = 0
and after some further rearragements the Vlasov equation (7) yields the Fokker-Planck equation

∂Fa

∂t
+ v µ

∂Fa

∂Z
− ε Ω

∂Fa

∂φ
= Sa(x, p, t) +

1
p2

∂

∂xσ

(
p2Dxσxν

∂Fa

∂xν

)
, (10)

with the 25 Fokker-Planck coefficients

Dxσxν(xη , t) =
∫ t

0
ds 〈ḡxσ(t) ḡxν(s)〉 . (11)

These are homogeneous integrals along the unpertubed particle orbits of the fluctuating force field.
In the next section, we focus on the scattering of cosmic rays parallel to the background magnetic
field which results from pitch-angle diffusion in phase space.

2. Parallel transport of cosmic rays
Starting with the two-dimensional Fokker-Planck equation

∂F
∂t

+ v µ
∂F
∂z

=
∂

∂µ

(
Dµµ

∂F
∂µ

)
, (12)

with the pitch-angle Fokker-Planck coefficient

Dµµ =
∫ ∞

0
dt 〈µ̇(t) µ̇(0)〉 . (13)
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These formulas can be deduced from the more general ones above in case of negligible perpendic-
ular Fokker-Planck coefficients as well as momentum diffusion due to the assumption of purely
magnetic fluctuations (Shalchi 2009).
Applying the operator 1

2

∫ 1
−1 dµ onto the Fokker-Planck equation (12) yields the continuity equation

∂M(z, t)
∂t

= −∂j(z, t)
∂z

(14)

where we defined the pitch angle averaged particle density

M(z, t) ≡ 1
2

∫ 1

−1
dµ F(µ, z, t) (15)

as well as the pitch angle averaged current density

j(z, t) =
v
2

∫ 1

−1
dµ µF(µ, z, t) (16)

and used Dµµ(µ = ±1) = 0 since gµ(µ = ±1) = 0 (see Exercise 2.1). With partial integration the
current density (16) can be rewritten as

j(z, t) = −v
4

∫ 1

−1
dµ

∂(1− µ2)

∂µ
F(µ, z, t) =

v
4

∫ 1

−1
dµ (1− µ2)

F(µ, z, t)
∂µ

. (17)

In order to replace the term ∂F
∂µ , the operator

∫ µ
−1 is applied onto the Fokker-Planck equation (12)

and the subsequent multiplication with (1− µ2)/Dµµ yields

1− µ2

Dµµ

∂

∂t

∫ µ

−1
dν F(ν, z, t) +

1− µ2

Dµµ
v

∂

∂z

∫ µ

−1
dν νF(ν, z, t) = (1− µ2)

∂F(µ, z, t)
∂µ

. (18)

Therewith, the current density (17) is expressed by

j(z, t) =
v
4

∫ 1

−1
dµ

1− µ2

Dµµ

∫ µ

−1
dν

∂F(ν, z, t)
∂t

+
v2

4

∫ 1

−1
dµ

1− µ2

Dµµ

∫ µ

−1
dν ν

∂F(ν, z, t)
∂z

. (19)

At late times t → ∞ the ensemble-averaged particle distribution function F(µ, z, t) is equal to the
pitch angle averaged particle density M(z, t) due to pitch angle isotropization and thus

j(z, t) =
v
4

∂M(z, t)
∂t

∫ 1

−1
dµ

1− µ2

Dµµ

∫ µ

−1
dν +

v2

4
∂M(z, t)

∂z

∫ 1

−1
dµ

1− µ2

Dµµ

∫ µ

−1
dν ν

= κzt
∂M(z, t)

∂t
− κzz

∂M(z, t)
∂z

,

(20)

with

κzt =
v
4

∫ 1

−1
dµ

(1− µ2)(1 + µ)

Dµµ
and κzz =

v2

8

∫ 1

−1
dµ

(1− µ2)2

Dµµ
. (21)

Using the continuity equation (14) we obtain

j(z, t) = − ∂

∂z
[κzt j(z, t) + κzz M(z, t)] . (22)

Comparing Eq. (15) with (16) it can be seen that j(z, t) tends to zero for late times since f (µ, z, t)
becomes almost isotropic and the current density (22) simplifies to

j(z, t) = −κzz
∂M(z, t)

∂z
(23)
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and the diffusion equation yields

∂M(z, t)
∂t

= κzz
∂2M(z, t)

∂z2 (24)

in the case of a diffusion coefficient κzz independent of z. Thus, the resulting equation is equal
(apart from the source and advection term) to the convection-diffusion equation we already derived
in section III.1, however, without using Fick’s law and under consideration of the effect of magnetic
turbulences on the cosmic rays.
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V. Calculation Of The Diffusion Coefficient

In this chapter the diffusion coefficient κzz is going to be calculated in detail, however, there first
need to be some assumptions about the electromagnetic fluctuation field.

1. Alfvén waves
An Alfvén wave is a type of magnetohydrodynamic wave in which (not only electrons but also)
ions oscillate (but with a different velocity) in response to a restoring force. Thereby, the oscillation
travels with a low frequency (compared to the gyrofrequency of the ions), i.e. the wavenumber
|k| � kc ≡ 8.78 · 10−8

√
ne/(1 cm−3) cm−1, along the ordered magnetic field (although there are

also waves propagating perpendicular to the magnetic field, which are called magnetosonic waves).
The wave is dispersionless

ωj = jVA k‖ , with j = ±1 (1)

where the Alfvén velocity is defined by

VA ≡
B0√

4π (mp + me) ne

= 2.18 ·
(

B0

1 G

)( ne

1 cm−3

)−1/2
cm/s . (2)

In the case of large wavenumbers |k| � kc the left-handed Alfvén waves become left-handed
ion cyclotron waves with a k-independent frequency ωj ' Ωp that only depends on the proton
gyrofrequency. Additionally, the right-handed Alfvén waves develope at frequencies Ωp < |ω| <
Ωe into the right-handed whistler waves, which are dispersive since ωj ' −(2VAk2/kc + Ωp). Using
only these parallel propagating magnetohydrodynamic waves it can be shown (Achatz et al. 1991)
that the pitch-angle Fokker-Planck coefficient simplifies to

Dµµ =
Ω2(1− µ2)

2B2
0

∑
j=±1

∞

∑
n=−∞

∫
d3k Rj(k, ωj)

[
1−

µωj

k‖v

]2 (
J2
n+1(W) Pj

RR(k) + J2
n−1(W) Pj

LL(k)
)

,

(3)
where the Breit-Wigner type resonance function Rj(k, ωj) is in the considered case of undamped
waves determined by

Rj(k, ωj) ≡ π (vµk‖ −ωj + nΩ) . (4)

Furthermore, Jn(W) denotes the Bessel function of first kind with

W ≡ kv
√

1− µ2 sin θ

Ω
(5)

and the magnetic fluctuation correlation tensor

Pj
lm(k) = 〈δBl(k) δBm(k)〉 (6)

is used for left-(L) and right-(R) handed polarized fluctuating magnetic field δBL,R ≡ (δBx ±
i δBy)/

√
2. In order to calculate the Fokker-Planck coefficient (3) the turbulence geometry needs

to be specified.
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1.1. Slab turbulence
Here, we assume that the turbulent fields depend only on the z-coordinate which is parallel to the
background magnetic field B0 = B0 ez, so that the slab turbulence tensor yields

Pj
lm(k) =

{
gj

s(k‖)(δ(k⊥)/k⊥) [δlm + i σj(k‖) εlmz] , for l, m = x, y
0 , for l, m = z ,

(7)

where the Kronecker δ-symbol δlm as well as the total antisymmetric tensor εijl of rank 3 is used
and σj(k‖) denotes the magnetic helicity (σ = 0 for linear polarized waves). The wave intensity

function gj
s(k‖) is determined by

(δBj)
2 =

∫
d3k

(
Pj

11(k) + Pj
22(k) + Pj

33(k)
)
= 4π

∫ ∞

−∞
dk‖ gj

s(k‖) . (8)

Considering only the Alfvénic part of the dispersion relation the Fokker-Planck coefficient (3)
further reduces to

Dµµ = ∑
j=±1

π2Ω2(1− µ2)

v B2
0

(1− jηµ)2

|µ− jη|

[
(1− σj(kj

r))gj
s(k

j
r) + (1 + σj(−kj

r))gj
s(−kj

r)
]

, (9)

with the resonant parallel wavenumber kj
r = Ω/v

µ−jη =
R−1

L
µ−jη , where η = VA/v and RL denotes the

Larmor radius.

1.2. Kolmogorov-type power law turbulence spectra
In order to illustrate the pitch-angle diffusion coefficient κzz, the turbulence spectrum gj

s as well as
the helicity σj in the Fokker-Planck coefficient (9) still need to be specified. Due to Fig. (V.1) it is
justifiable to assume (i) power law turbulence spectra

gj
s(k‖) = gj

s0 k−q
‖ , for k‖ > k‖,min and gj

i(k) = gj
i0 k−q , for k > kmin , (10)

with q > 1 (in the case of Kolmogorov turbulence q = 5/3) and

gj
s0 =

q− 1
4π

(δBj)
2 kq−1
‖min , gj

s0 = (q− 1) (δBj)
2 kq−1

min (11)

as well as (ii) isospectral turbulence, so that the helicities (i.e. σj, the normalized cross helicity state
Hc = 2gj=1/gtot− 1 which denotes the ratio of the intensities of forward (j=1 or f) and backward (j=-
1 or b) propagating waves and the fractional abundance of forward moving waves r = (1+ Hc)/2)
are independent of wavenumber k.
Consequently, κzz can be determined and with λ = 3κzz/v the cosmic-ray mean free path along
the ordered magnetic field yields

λ =
3v
8

∫ 1

−1
dµ

(1− µ2)2

Dµµ
=

3
2π(q− 1)

(
B0

δB

)2

(RLkmin)
1−qRL F(ε, Hc, σf ,b) (12)

with the integral

F(ε, Hc, σf ,b) ≡
∫ 1

−1
dµ

1− µ2

N(µ)
(13)
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Figure V.1.: Different measurements indicate the power law structure of the interstellar turbulence.

where

N(µ) =r(1− µη)2 |µ− η|q−1 [(1 + σf ) H[ε(η − µ)] + (1− σf ) H[ε(µ− η)]
]

+ (1− r)(1 + µη)2 |µ + η|q−1 [(1 + σb) H[ε(−η − µ)] + (1− σb) H[ε(µ + η)]]
(14)

and still ε = q/ |q| = ±1. In the range 1 < q < 3, it can be shown (Dung & Schlickeiser 1990) that
for energetic particles η = VA/v� 1, the integral is accurately approximated by

F(ε, Hc, σf ,b) '
2

(2− q)(4− q)

[
1
a
+

1
α

]
+ η2−q

[
2
d
− b

a
− β

α
+

1
q− 2

(
1
a
+

1
α

)]
, (15)

with

a =r(1− εσf ) + (1− r)(1− εσb) ,

ab =(1− r)(1− εσb)− r(1− εσf ) ,

α =r(1 + εσf ) + (1− r)(1 + εσb) ,

αβ =r(1 + εσf )− (1− r)(1 + εσb) ,

d =r(1 + εσf ) + (1− r)(1− εσb) .

(16)

In the case of a linearly polarized (σf = σb = 0) Alfvén wave field with zero cross helicity (Hc = 0,
r = 1/2) the expression (15) further simplifies to

F ' 4
(2− q)(4− q)

+ η2−q
(

2 +
2

q− 2

)
, (17)

so that the mean free path (12) depends on the kinetic energy Ekin of the cosmic rays as follows:
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1. ALFVÉN WAVES

1. At non-relativistic energies λ(1 < q < 2) ∝ E(2−q)/2
kin and λ(2 < q < 3) is constant.

2. At relativistic energies λ(1 < q < 3) ∝ E2−q
kin .

For q < 2 the mean free path is (apart from all helicity values) mainly determined by

λ ' RL

(
B0

δB

)2 ( lmax

RL

)q−1

, (18)

where lmax = 2π k−1
min denotes the maximal Alfvén wavelength. Since lmax has to be smaller than

the size L of the astrophysical system we obtain

λ ' RL

(
B0

δB

)2 ( L
RL

)q−1

. (19)

Thus, in the case of Kolmogorov diffusion (where q = 5/3) the mean free path yields

λKol ∝ E1/3
kin . (20)

Going back to the simple steady state leaky box model of section III.3 and assuming that the
particle escape is dominated by Kolmogorov diffusion, the escape time enlarges due to the effect
of diffusion according to τesc ∝ λ−1

Kol . Consequently, the observed cosmic ray spectrum yields
n(E) ∝ E−α−1/3 which gives a quite good agreement with the observations (see Fig. (III.1)). There
is an elementary lower limit on the pitch angle diffusion given, by equalizing the mean free path
with the Lamor radius of the cosmic rays, which is called Bohm diffusion (here q = 1).
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